Writing Efficient Programs in Fortran, C and C++: Selected Case Studies

Georg Hager
Frank Deserno
Dr. Frank Brechtfield
Dr. Gerhard Wellein
Regionales Rechenzentrum Erlangen
HPC Services

Agenda

- "Common sense" optimizations
 - Case Study: Optimization of a Monte Carlo spin system simulation
- Classic data access optimizations
 - Case Study: Optimization of kernel loops
 - Case Study: Optimization and parallelization of a Strongly Implicit Solver
- Advanced Parallelization
 - Case Study: Parallelization of a C++ sparse matrix-vector multiplication

Optimization Case Studies

Case Study: Optimization of a Monte Carlo Spin System Calculation

Optimization of a Spin System Simulation: Model

- 3-D cubic lattice
- One variable ("spin") per grid point with values +1 or -1
- "Interaction": Variables on neighbouring grid points prefer to have the same values

Systems under consideration
- 50·50·50=125000 lattice sites
- 2125000 different configurations
- Computer time: 2125000 · 1 ns ~ 1037000 years

Loophole: Monte Carlo simulation!
- Random choice of a subset of all configurations
- Memory requirement of original program ~ 1 MByte

Optimization of a Spin System Simulation: Original Code

Program Kernel:

```
Load neighbours of a random spin
```
```
calculate magnetic field
```
```
declare about spin orientation
```

Optimization of a Spin System Simulation: Model

```
CAS = I(A) + I(B) + I(C) + I(D) + I(E) + I(F)
```
```
BF = 0.5*d0*(1.0d0+tanh(CAS/tt))
```
```
IF(YHE.LE.BF) then
```
```
iz(kl,km,kn)=1
```
```
else
```
```
iz(kl,km,kn)=-1
```
```
endif
```

```
Load neighbours of a random spin
calculate magnetic field
declare about spin orientation
```
Optimization of a Spin System Simulation:

Code Analysis

- Profiling shows that
 - 30% of computing time is spent in the \(\tanh \) function
 - Rest is spent in the line calculating \(\text{edelz} \)

- Why?
 - \(\tanh \) is expensive by itself
 - Compiler fuses the spin loads and calculation of \(\text{edelz} \) into a single line

- What can we do?
 - Try to reduce the „strength“ of calculations (here \(\tanh \))
 - Try to make the CPU move less data

- How do we do it?
 - Observation: argument of \(\tanh \) is always integer in the range -6..6 (i.e., always 1)
 - Observation: Spin variables only hold values +1 or -1

Optimization of a Spin System Simulation:

Making it Faster

- Strength reduction by tabulation of \(\tanh \) function
 \[
 B^2 = 0.5d0*(1.d0+tanh_table(\text{edelz}))
 \]

- Performance increases by 30% as table lookup is done with „lightspeed“ compared to \(\tanh \) calculation

- By declaring spin variables with \(\text{INTEGER}^*4 \) instead of \(\text{INTEGER}^*4 \)
 - the memory requirement is reduced to about \(1/4 \)
 - Better cache reuse
 - Factor 2-4 in performance depending on platform
 - Why don't we use just one bit per spin?
 - Bit operations (mask, shift, add) too expensive? no benefit

Potential for a variety of data access optimizations

- But: choice of spin must be absolutely random!

Optimization of Kernel Loops:

Helping the Compiler

- SR8000 compiler with highest optimization chooses the following pseudo-vectorization strategy:
 - Prefetch for \(\text{KVK}() \), \(\text{F}() \) and \(\text{S}() \)
 - Preload for \(\text{S}() \) and \(\text{WERTT}() \)

- Outer loop unrolling of first loop impossible due to dependencies
- Unrolling of second loop useless due to possible dependencies

Important facts about the data structures:

- IQM is small (typically 9)
- Entries in \(\text{KZH}() \) are sorted in ascending order
- Length of \(\text{F}(\cdot) \) is small (between 100 and 200), array fits in cache
- \(\text{KX}() \) is typically a couple of 1000s
- Length of \(\text{WERTT}() \) is very small (1 in the worst case), fits in cache

- First aid: disable pseudo-vectorization for \(\text{S}() \) and \(\text{WERTT}() \)
 - \(\rightarrow \) acceleration to 77 MFlops!
Optimization of Kernel Loops: Why preload is not always beneficial

- Preload must be issued...
 - for every input stream in the loop that is eligible for it
 - for every iteration of the unrolled loop
- Significant overhead for data that is already in cache
- Why is prefetch not as bad for in-cache data?
 - Prefetch only necessary for each 16th data element in each stream (cache line size is 128 bytes)
 - This rate is achieved by the appropriate amount of unrolling
 - unrolling avoids unnecessary prefetches
 - Preload might be better for strided access
 - The larger the stride, the less efficient is prefetch

- Example: Vector product
 \[A(1:N) = B(1:N) \cdot C(1:N) \]
 - In-cache preload penalty: factor 3
 - No cache reuse!
 - One preload per iteration
 - In-cache prefetch penalty: maybe 10%
 - Just one prefetch every 16 iterations
- Out-of-cache preload: better than nothing, but much worse than (consecutive) prefetch

Visualization of data access

- Strided access (stride 8): Bad reuse of prefetched data
 - Effective cache size is only 1/8 of real size
 - One prefetch every other iteration
 - CPU running out of memory references!
 - Stride does not affect performance of preload streams

- Is there more potential for optimization?
 - Try to enable unrolling of outer loop!
 - Original access pattern:
 \[f(K) \]
 - Naïve optimization: "pseudo-loop-interchange"
 - New access pattern: introduce new outer loop level (blocking), interchange middle and inner loops
 - Now full register reuse for \(f() \) possible
 - \(f() \) is loaded only once from memory
 - Downside: small inner loop length
Optimization of Kernel Loops:
Data Access Transformations, First Loop

- Naive optimization does not pay off with SR8000 and all Intel systems
 - Inner loop length too small
 - Even manual unrolling of middle (k) loop does not help
- Remedy: Retain a moderately large inner loop length but enable unrolling to improve Flop/Load quotient
 - Access pattern:
 - Unrolling of middle loop now possible

Optimization of Kernel Loops:
Data Access Transformations, Second Loop

- Problem: Data dependency prevents compiler from unrolling the loop (no improvement expected)
- Remedy: Unrolling pays off when the instances of the loop body write to different targets
- Final subroutine performance: ~ 94 MFlops
 - Whole program: 90 MFlops; MPI code performance doubled

Optimization of Kernel Loops:
Architectural Issues

- MIPS R14000: Optimal strategy is the naieve optimization!
 - Original code performs about as well as fully optimized version on SR8000
 - no unnecessary preload attempts because there is no provision for preload
 - Good performance of short loops due to short pipelines
 - Compiler unrolls the middle loop automatically to make the loop body fatter
 - 2 instructions/cycle (very good!)
 - Final code on O3400 is about 50% faster than optimal version on SR8000

- IA32: Optimal strategy is the same as for SR8000
 - Very limited FP register set, stack-oriented
 - Few integer registers
 - Long P4 pipeline, but good performance with short loops
 - due to special L1-ICache (decoded instructions)?
- IA64: Optimal strategy is the same as for SR8000
 - Very bad performance for naive strategy
 - Further unrolling (by 4) of middle loop helps
 - But: Naive optimization with middle loop unrolling (16-fold) is also very close to optimum
 - Also some benefit on IA32, but not that much

Optimization of Kernel Loops:
Optimal SR8000 Code for First Loop

```fortran
do M=1,19
I=KZHX(M)
IF(M.NE.IQ) then
IEND=KZHX(M+1)-1
else
IEND=KZAHL
endif
IS=1
if(mod(M,2).NE.0) then
  do MM=1,mod(M,2)
    *voption nopreload(S)
    *voption noprefetch(S)
    do K=ISTART,IEND
      F(K)=F(K)*S(MVK(K,IS))
    enddo
  enddo
IS=IS+mod(M,2)
endif
  do MM=IS,M,2
    *voption nopreload(S)
    *voption noprefetch(S)
    do K=ISTART,IEND
      F(K)=F(K)*S(MVK(K,MM))
    enddo
  enddo
enddo
remainder loop
middle loop
```

Optimization of Kernel Loops:
Optimal SR8000 Code for Second Loop

```fortran
do K=1,IQ
WERTT(K)=WERTT(K)+WERTT2(K)
enddo
```

Optimization of Kernel Loops:
Architectural Issues

- IA32: Optimal strategy is the same as for SR8000
 - Very limited FP register set, stack-oriented
 - Few integer registers
 - Long P4 pipeline, but good performance with short loops
 - due to special L1-ICache (decoded instructions)?
- IA64: Optimal strategy is the same as for SR8000
 - Very bad performance for naive strategy
 - Further unrolling (by 4) of middle loop helps
 - But: Naive optimization with middle loop unrolling (16-fold) is also very close to optimum
 - Also some benefit on IA32, but not that much
Optimization of Kernel Loops: Conclusions

- SR8000 is a RISC architecture, but has some particular features
 - Vectorization abilities
 - 16 outstanding prefetches
 - 128 outstanding preloads
 - Large bandwidth
 - Long FP pipelines
- Careful data stream analysis is more important on SR8000 than on other RISC systems
- Sometimes PVP gets in the way of performance
- MIPS behaviour is as expected for typical RISC machine
- IA32/IA64 is still a mystery
- Complicated architecture (CISC+RISC/EPIC), maybe compiler deficiencies

Case Study: Optimization and Parallelization of a Strongly Implicit Solver

CFD kernel: Strongly Implicit Solver

- CFD: Solving $A \mathbf{x} = \mathbf{b}$ for finite volume methods can be done by Strongly Implicit Procedure (SIP) according to Stone
- SIP-solver is widely used:
 - LESOCO, FASTEST, FLOWSI (Institute of Fluid Mechanics, Erlangen)
 - CATHIA (Theoretical Thermodynamics and Transport Processes, Bayreuth)
- SIP-Solver:
 1) Incomplete LU-factorization
 2) Series of forward/backward substitutions
- Toy program available at: ftp.springer.de:/pub/technik/peric (M. Peric)

SIP-solver: Data Dependencies & Implementations

Basic data dependency:

$$ \{(i,j,k);(i,j-1,k);(i,j,k-1)\} $$

Dominant part: Forward (and backward) Substitution!

Naive 3D version:

```plaintext
do k = 2 , kMax
  do j = 2 , jMax
    do i = 2 , iMax
      RES(i,j,k) = RES(i,j,k) - LB(i,j,k)*RES(i,j,k-1) - LW(i,j,k)*RES(i-1,j,k) - LS(i,j,k)*RES(i,j-1,k) * LP(i,j,k)
    enddo
  enddo
enddo
```

Dominant part: Forward (and backward) Substitution!

SIP-solver: Implementations & Single Processor Performance

Size=91 (100 MB); naive implementation/compiler switches
IBM improvements:
- split single loop in 4 separate loops; use large pages

IBM p655
IBM p655 (large pages)
IBM p655 (loop split)
IBM p655 (loop split + large pages)
I2 (1 GHz; ef7.1)

IBM improvements:
- split single loop in 4 separate loops; use large pages

SIP-solver:
Resolving Data Dependencies With Hyperplanes

Basic data dependency:
\{(i, j, k); (i, j-1, k); (i, j, k-1)\}

Define Hyperplane: \(i+j+k=\text{const}\)
- non-contiguous memory access
- shared memory parallelization
- vectorization of innermost loop

```
do l=1, hyperplanes
    n=ICL(l)
    do m=n+1, n+LM(l)
        ijk=IJKV(m)
        RES(ijk)=(RES(ijk) - LB(ijk)*RES(ijk-ijMax) - 
                   LW(ijk)*RES(ijk-1) - 
                   LS(ijk)*RES(ijk-iMax)) 
                   *LP(ijk)
    enddo
endo
```

SIP-solver:
Resolving Data Dependencies With Hyperplanes

Basic data dependency:
\{(i, j, k); (i-1, j, k); (i, j-1, k); (i, j, k-1)\}

Define Hyperplane: \(i+j+k=\text{const}\)
- non-contiguous memory access
- shared memory parallelization
- vectorization of innermost loop

```
do l=1, hyperplanes
    n=ICL(l)
    do m=n+1, n+LM(l)
        ijk=IJKV(m)
        RES(ijk)=(RES(ijk) - LB(ijk)*RES(ijk-ijMax) - 
                   LW(ijk)*RES(ijk-1) - 
                   LS(ijk)*RES(ijk-iMax)) 
                   *LP(ijk)
    enddo
endo
```

SIP-solver:
Data Dependencies & Implementations

Basic data dependency:
\{(i, j, k); (i-1, j, k); (i, j-1, k); (i, j, k-1)\}

3-fold nested loop (3D): \((i,j,k)\)
- Data locality, but recurrences
- No automatic shared memory parallelization by compiler, but OpenMP
 (except Hitachi SR8000: Pipeline parallel processing)

Thread
0
1
2
Barrier

Thread is being distributed:

SIP-solver:
Implementations & Single Processor Performance

Benchmark:
- Lattice: 91^3
- 100 MB
- 1 ILU
- 500 iterations
- HSR8k-F1:
 - unrolling up to 32 times
 - IBM Power4 (p690):
 - 128 MB L3 cache accessible for 1 CPU
IBM wants to improve performance.

SIP-solver: SMP scalability (Hyperplane & Hyperline)

SMP scalability: Pipeline Parallel Processing (3D)

SIP-solver: Problem Sizes & Performance

Case Study: Parallelization of a Sparse MVM in C++

Sparse MVM Procedure in DMRG

- DMRG
 - Density Matrix Renormalization Group Algorithm
 - Used for solving quantum problems in solid state physics and theoretical chemistry
 - Alternative to expensive (resource-consuming) Exact Diagonalization
- Core of DMRG: Sparse matrix-vector multiplication (in Davidson diagonalization)
 - Dense matrices as matrix and vector components
 - Dominant operation at lowest level: dense matrix-matrix multiply (use optimized Level 3 BLAS)
- Parallelization approaches:
 - Use parallel BLAS (no code changes)
 - Parallelize sparse MVM using OpenMP
DMRG: Potential Parallelization approaches

Implementation of sparse MVM – pseudocode

\[\hat{H} \psi = \sum_{\alpha} \sum_{k} \sum_{\nu} A^{\alpha}_{\nu,\nu} (\hat{R}^{\alpha}_{\nu,\nu}) \hat{P}^{\alpha}_{\nu,\nu} \]

// W: wavevector ; R: result
for (\alpha=0; \alpha < \text{number of Hamiltonian terms}; \alpha++) {
 \text{term} = \text{hamiltonian terms}[\alpha];
 for (k=0; k < \text{term number of blocks}; k++) {
 li = \text{term}[k].left_index;
 ri = \text{term}[k].right_index;
 \text{temp_matrix} = \text{term}[k].B.transpose() \times W[ri];
 R[li] += \text{term}[k].A \times \text{temp_matrix};
 }
}

Matrix-Matrix-Multiply
(Parallel DGEMM ?!) Data dependency !
Parallel loop ?

DMRG: Potential Parallelization approaches

1. Linking with parallel BLAS (DGEMM)
 - Does not require restructuring of code
 - Significant speed-up only for large (transformation) matrices \((A, B)\)

2. Shared-Memory parallelization of outer loops
 - Chose OpenMP for portability reasons
 - Requires some restructuring & directives
 - Speed-Up should not depend on size of (transformation) matrices

Expected maximum speed-up for total program:
 - If MVM is parallelized only: ~6 - 8
 - If also Davidson algorithm is parallelized: ~10

MPI parallelization
 - Requires complete restructuring of algorithm

DMRG: Linking with Parallel BLAS

- Useless on IBM for \#CPU > 4
- Best scalability on SGI (Network, BLAS implementation)
- Dual processor nodes can reduce elapsed runtime by about 30 %
- Speedup is also strongly dependent on problem parameters

DMRG: OpenMP Parallelization

Implementation of parallel sparse MVM – pseudocode (prologue loops)

// store all block references in block_array
ics=0;
for (\alpha=0; \alpha < \text{number of Hamiltonian terms}; \alpha++) {
 \text{term} = \text{hamiltonian terms}[\alpha];
 for (k=0; k < \text{term number of blocks}; k++) {
 block_array[ics] = \text{term}[k];
 ics++;
 }
}
icsmax=ics;
// set up lock lists
for (i=0; i < \text{MAX NUMBER OF THREADS}; i++)
 mm[i] = new Matrix // temp matrix
for (i=0; i < \text{MAX NUMBER OF LOCKS}; i++)
 locks[i] = new omp_lock_t;
omp_init_lock(locks[i]);

Fused \((\alpha, k)\) loop

DMRG: OpenMP Parallelization

Implementation of parallel sparse MVM – pseudocode (main loop)

// W: wavevector ; R: result
#pragma omp parallel private(mymat, li, ri, myid, ics)
{
 myid = omp_get_thread_num();
 mytmat = mm[myid]; // temp thread local matrix
 #pragma omp for
 for (ics=0; ics < icsmax; ics++) {
 li = block_array[ics]->left_index;
 ri = block_array[ics]->right_index;
 mytmat = block_array[ics]->B.transpose() \times W[ri];
 omp_set_lock(locks[li]);
 R[li] += block_array[ics]->A \times mytmat;
 omp_unset_lock(locks[li]);
 }
}

Fused \((\alpha, k)\) loop

Protect each block of result vector & with locks
DMRG: OpenMP Parallelization

- The parallel code is compliant to the OpenMP standard
- However: NO system did compile and produce correct results with the initial MVM implementation!

<table>
<thead>
<tr>
<th>System</th>
<th>Issue</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM eC/V6.0</td>
<td>OpenMP looks prevent omp. for parallelization</td>
<td>Fixed by IBM</td>
</tr>
<tr>
<td>Intel etc V7, 8c V7</td>
<td>Severe problems with orphaned omp. critical directives in class constructors</td>
<td>Does not work</td>
</tr>
<tr>
<td>SUN fortes</td>
<td>Does not allowomp. critical inside C++ classes</td>
<td>Does not work (Forte 8 EA does work)</td>
</tr>
<tr>
<td>SGI MIPSpro 7.3.1.3m</td>
<td>Complex data structures cannot be allocated inside omp. parallel regions</td>
<td>Allocate everything outside loop</td>
</tr>
</tbody>
</table>

Scalability on SGI Origin

- OMP_SCHEDULE=STATIC
- OpenMP scales significantly better than parallel DGEMM
- Serial overhead in parallel MVM is only about 5%
- Still some parallelization potential left in program

Further improvement of total performance/scalability

- Chose best distribution strategy for parallel for loop: OMP_SCHEDULE="dynamic, 2"
 (reduces serial overhead in MVM to 2%)
- Re-Link with parallel LAPACK/BLAS to speed-up density-matrix diagonalization (DSYEV).
- Good thing to do: OMP_NESTED=FALSE

Thank You!